Singular Vector Methods for Fundamental Matrix Computation
نویسندگان
چکیده
The normalized eight-point algorithm is broadly used for the computation of the fundamental matrix between two images given a set of correspondences. However, it performs poorly for low-size datasets due to the way in which the rank-two constraint is imposed on the fundamental matrix. We propose two new algorithms to enforce the rank-two constraint on the fundamental matrix in closed form. The first one restricts the projection on the manifold of fundamental matrices along the most favorable direction with respect to algebraic error. Its complexity is akin to the classical seven point algorithm. The second algorithm relaxes the search to the best plane with respect to the algebraic error. The minimization of this error amounts to finding the intersection of two bivariate cubic polynomial curves. These methods are based on the minimization of the algebraic error and perform equally well for large datasets. However, we show through synthetic and real experiments that the proposed algorithms compare favorably with the normalized eight-point algorithm for low-size datasets.
منابع مشابه
A Novel Noise Reduction Method Based on Subspace Division
This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...
متن کاملHigh Accuracy Computation of Rank-constrained Fundamental Matrix by Efficient Search
High Accuracy Computation of Rank-constrained Fundamental Matrix by Efficient Search Yasuyuki SUGAYA† and Kenichi KANATANI†† † Department of Information and Computer Sciences, Toyohashi University of Technology, Toyohashi, Aichi, 441–8580 Japan †† Department of Computer Science, Okayama University, Okayama, 700–8530 Japan E-mail: †[email protected], ††[email protected] Abs...
متن کاملA Novel Noise Reduction Method Based on Subspace Division
This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...
متن کاملVerification of dLVv Transformation for Singular Vector Computation with High Accuracy
Let a singular value of a bidiagonal matrix be known. Then the corresponding singular vector can be computed through the twisted factorization of a tridiagonal matrix by the discrete Lotka-Volterra with variable step-size (dLVv) transformation. Errors of the singular value then sensitively affect the conditional number of the tridiagonal matrix. In this paper, we first examine a relationship be...
متن کاملHigh Accuracy Computation of Rank-Constrained Fundamental Matrix
A new method is presented for computing the fundamental matrix from point correspondences: its singular value decomposition (SVD) is optimized by the Levenberg-Marquard (LM) method. The search is initialized by optimal correction of unconstrained ML. There is no need for tentative 3-D reconstruction. The accuracy achieves the theoretical bound (the KCR lower bound).
متن کامل